fregimus: (Default)
[personal profile] fregimus

Демон Максвелла садится за клавиатуру и нажимает клавиши: сначала А, через 1/2 секунды — Б, через 1/4 — опять А, через 1/8 — Б, через 1/16 — опять А, и так далее.

Сумма геометрической прогрессии 1/2+1/4+1/8+1/16+… = 1. Это значит, что демон Максвелла закончит нажимать клавиши через секунду. Вопрос: какую клавишу он нажмет последней, А или Б?

Это не будет ни А, ни Б. Демон нажмет клавиши бесконечное число раз, а значит, вопрос эквивалентен, например, вопросу о том, четное или нечетное самое последнее натуральное число. Вопрос лишен смысла, потому что последнего натурального числа нет. Интуиция отказывается принять этот ответ: ведь демон нажимал на кнопки всего секунду, а потом улетел. Ведь последней он все-таки нажал одну из них!

Если этот вопрос покажется слишком искусственным, вот вам второй. Рассмотрим функцию f(х) = cos х + cos πх. Эта функция ограничена интервалом [−2; +2], потому что каждое из слагаемых (в мирное, во всяком случае, время) ограничено [−1; +1]. Более того, у функции есть локальные максимумы и минимумы: «ямы», откуда нельзя упасть, а надо только выбираться — минимумы, а «пики», с которых можно падать вниз, а вверх забираться уже некуда — максимумы.

 

Вопрос: какой самый высокий из пиков и самая глубокая из ям? Самый высокий пик мы видим при х=0: значение функции равно 2, а больше оно быть не может. А какой самый глубокий минимум?

Минимум одного из слагаемых, функции cos х достигается при значениях х=π(2n+1), где n любое целое число, то есть при значениях аргумента …−3π, −π, π, 3π, 5π… Все эти минимумы достигают ровно −1. Минимумы второго слагаемого, функции cos πх тоже равны −1, только достигаются они при значениях аргумента х, равных х=2m+1, где m целое, то есть …−3, −1, 1, 3, 5… Чтобы получилось …−2, нужно, чтобы оба минимума точно совпали.

Вот только точно они никогда не совпадут. Если мы предположим, что для каких-то m и n π(2n+1)=2m+1, то тогда получится что π=(2m+1)/(2n+1), то есть равно дроби, отношению двух целых чисел. Такие числа называются рациональными. Но мы-то знаем, что π — иррациональное число, так что этого не может быть. Значит, пики это никогда и не совпадут.

 

Давайте посмотрим, как приближается к −2 наша функция в некоторых точках. Вот на этом графике, около х=3, разве не равна эта функция −2? Нет, точное вычисление дает f(х)= −1.990909 при х=3.012997. Еще две самых низких точки «ям» около х=41 и х=47 имеют точные значения f(х)= −1.988498 при х=40.98539 и f(х)=−1.993038 при х=47.01138. Нет, все-таки она не достигает −2 — можно сказать, что чуть-чуть, но в математике и «чуть-чуть» бывает очень много!

А насколько близко они могут совпасть? Тут мы получаем интересный ответ: как угодно близко. Это означает, что для любой «ямы» которая не достигает глобального минимума −2 на любое сколь угодно малое положительное число ε, найдется яма, которая будет еще глубже (а, значит, и бесконечно много таких ям — для каждой из них найдется еще, чуть глубже нее, и так далее). Отсюда следует, что мы можем находить все более и более глубокие минимумы, достигая в пределе глубины −2. Получается, что глобальный минимум нашей функции равен −2.

А при каком значении аргумента х достигается этот минимум? А вот на этот вопрос ответ тот же, что и на первый: нет такого значения. Как же так: минимальное значение функции есть, значит, и аргумент при этом какой-то? Увы, нет. Можно найти несколько значений, при котором функция будет сколь угодно близка, но все-таки отличаться от −2. А вот чтобы добралась до него — нет, такого значения мы не найдем. Но если перебирать бесконечно много минимумов одного слагаемого (а они «всего-навсего» счетно-бесконечны), вот тогда последний из них…

Эти же рассуждения верны и для любого другого иррационального множителя при аргументе одного из косинусов. Это не обязательно π: подойдет и е, и √2  — рассуждения не изменятся от этого. Глобальный минимум по-прежнему будет равен −2, а найдем мы его… нигде не найдем!

Злые шутки играет с интуицией бесконечность, правда?

This account has disabled anonymous posting.
If you don't have an account you can create one now.
HTML doesn't work in the subject.
More info about formatting

Profile

fregimus: (Default)
fregimus

March 2014

S M T W T F S
       1
2 3456 78
910 1112 131415
16171819202122
23242526272829
3031     

Most Popular Tags

Page generated 2025-12-27 15:56

Expand Cut Tags

No cut tags